Prediction uncertainty assessment of a systems biology model requires a sample of the full probability distribution of its parameters
نویسندگان
چکیده
Multi-parameter models in systems biology are typically 'sloppy': some parameters or combinations of parameters may be hard to estimate from data, whereas others are not. One might expect that parameter uncertainty automatically leads to uncertain predictions, but this is not the case. We illustrate this by showing that the prediction uncertainty of each of six sloppy models varies enormously among different predictions. Statistical approximations of parameter uncertainty may lead to dramatic errors in prediction uncertainty estimation. We argue that prediction uncertainty assessment must therefore be performed on a per-prediction basis using a full computational uncertainty analysis. In practice this is feasible by providing a model with a sample or ensemble representing the distribution of its parameters. Within a Bayesian framework, such a sample may be generated by a Markov Chain Monte Carlo (MCMC) algorithm that infers the parameter distribution based on experimental data. Matlab code for generating the sample (with the Differential Evolution Markov Chain sampler) and the subsequent uncertainty analysis using such a sample, is supplied as Supplemental Information.
منابع مشابه
Supplemental Information to : Prediction 1 uncertainty assessment of a systems 2 biology model requires a sample of the full 3 probability distribution of its parameters
9
متن کامل The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study
Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...
متن کاملA Robust Optimization Methodology for Multi-objective Location-transportation Problem in Disaster Response Phase under Uncertainty
This paper presents a multi-objective model for location-transportation problem under uncertainty that has been developed to respond to crisis. In the proposed model, humanitarian aid distribution centers (HADC), the number and location of them, the amount of relief goods stored in distribution centers, the amount of relief goods sent to the disaster zone, the number of injured people transferr...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملStability Assessment of the Flexible System using Redundancy
In this study, dynamic behavior of a mooring line in a floating system is analyzed by probability approaches. In dynamics, most researches have shown the system model and environments by mathematical expression. We called this process as the forward dynamics. However, there is a limit to define the exact environments because of uncertainty. To consider uncertainty, we introduce the redundancy i...
متن کامل